An emergent quasi-2D metallic state with heavily doped CuO2 planes P.-C. Chiang(蔣平志)¹, S. C. Lin(林淑珍)¹, C.-S. Ku(古慶順)², C.-Y. Chiang(蔣慶有)², S. W. Huang(黃詩雯)^{3,*}, J. M. Lee(李振民)³, H. J. Lin (林宏基)², S. C. Haw(何樹智)², J. M. Chen(陳錦明)², Y.-H. Chu(朱英豪)^{4,5}, C. W. Luo(羅志偉)^{5,6}, J.-Y. Juang(莊振益)^{5,6}, K. H. Wu(吳光雄), J.-C. Yang(楊展其), and J.-Y. Lin(林俊源)^{1,5,*} ¹Institute of Physics, National Chiao Tung University, Hsinchu 30010, Taiwan ²National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan ³MAX IV Laboratory, Lund University, P. O. Box 118, 221 00 Lund, Sweden ⁴Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan ⁵Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu 30010, Taiwan ⁶Department of Electrophysics, National Chiao Tung University, Hsinchu 30010, Taiwan ⁷Department of Physics, National Cheng Kung University, Tainan 701, Taiwan ## ago@nctu.edu.tw ## **Abstract** Recent quasi-2D systems with judicious exploitation of the atomic monolayer or few-layer architecture exhibit unprecedented physical properties that challenge the conventional wisdom on matter. Infinite layer SrCuO₂ (SCO) is a topical Mott insulator. Here we show that such a model system can manifest an unexpected metallic state in the quasi-2D limit when SCO is simply grown on TiO₂-terminated SrTiO₃ (STO) substrates. The electrical transport properties indicate that this metallic system does not fit into Landau's paradigm of a Fermi liquid. X-ray absorption spectroscopy revealed characters analogous to those of a doped Mott insulator. The core element of hole doping is not at the interfaces between SCO and STO, but comes from the transient layer(s) between the chain-type and planar-type structures within the SCO sector as implied by an energy scan of x-ray Laue nano-diffraction. Keywords - Superconductivity, Heterostructures, Quasi-2D, Interface, heavily doped.